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Abstract. We consider the “order” analogues of some classical notions
of Banach space geometry: extreme points and convex hulls. A Hahn-
Banach type separation result is obtained, which allows us to establish
an “order” Krein-Milman Theorem. We show that the unit ball of any
infinite dimensional reflexive space contains uncountably many order
extreme points, and investigate the set of positive norm-attaining func-
tionals. Finally, we introduce the “solid” version of the Krein-Milman
Property, and show it is equivalent to the Radon-Nikodým Property.

1. Introduction

At the very heart of Banach space geometry lies the study of three in-
terrelated subjects: (i) separation results (starting from the Hahn-Banach
Theorem), (ii) the structure of extreme points, and (iii) convex hulls (for
instance, the Krein-Milman Theorem on convex hulls of extreme points).
Certain counterparts of these notions exist in the theory of Banach lattices
as well. For instance, there are positive separation/extension results; see
e.g. [1, Section 1.2]. One can view solid convex hulls as lattice analogues
of convex hulls; these objects have been studied, and we mention some of
their properties in the paper. However, no unified treatment of all three
phenomena listed above has been attempted.

In the present paper, we endeavor to investigate the lattice versions of (i),
(ii), and (iii) above. We introduce the order version of the classical notion
of an extreme point: if A is a subset of a Banach lattice X, then a ∈ A is
called an order extreme point of A if for all x0, x1 ∈ A and t ∈ (0, 1) the
inequality a ≤ (1− t)x0 + tx1 implies x0 = a = x1. Note that, in this case,
if x ≥ a and x ∈ A, then x = a (write a ≤ (x+ a)/2).

Throughout, we work with real spaces. We will be using the standard Ba-
nach lattice results and terminology (found in, for instance, [1], [19] or [22]).
We also say that a subset of a Banach lattice is bounded when it is norm
bounded, as opposed to order bounded.
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Some special notation is introduced in Section 2. In the same section, we
establish some basic facts about order extreme points and solid hulls. In
particular, we note a connection between order and “canonical” extreme
points (Theorem 2.2).

In Section 3 we prove a “Hahn-Banach” type result (Proposition 3.1), in-
volving separation by positive functionals. This result is used in Section 4 to
establish a “solid” analogue of the Krein-Milman Theorem. We prove that
solid compact sets are solid convex hulls of their order extreme points (see
Theorem 4.1). A “solid” Milman Theorem is also proved (Theorem 4.4).

In Section 5 we study order extreme points in AM -spaces. For instance, we
show that, for an AM-space X, the following three statements are equivalent:
(i) X is a C(K) space; (ii) the unit ball of X is the solid convex hull of
finitely many of its elements; (iii) the unit ball of X has an order extreme
point (Propositions 5.3 and 5.4).

Further in Section 5 we investigate norm-attaining positive functionals.
Functionals attaining their maximum on certain sets have been investi-
gated since the early days of functional analysis; here we must mention
V. Lomonosov’s papers on the subject (see e.g. the excellent summary [3],
and the references contained there). In this paper, we show that a separable
AM-space is a C(K) space iff any positive functional on it attains its norm
(Proposition 5.5). On the other hand, an order continuous lattice is reflexive
iff every positive operator on it attains its norm (Proposition 5.6).

In Section 6 we show that the unit ball of any reflexive infinite-dimensional
Banach lattice has uncountably many order extreme points (Theorem 6.1).

Finally, in Section 7 we define the “solid” version of the Krein-Milman Prop-
erty, and show that it is equivalent to the Radon-Nikodym Property (The-
orem 7.1).

To close this introduction, we would like to mention that related ideas have
been explored before, in other branches of functional analysis. In the theory
of C∗ algebras, and, later, operator spaces, the notions of “matrix” or “C∗”
extreme points and convex hulls have been used. The reader is referred to
e.g. [11], [12], [14], [23] for more information; for a recent operator-valued
separation theorem, see [18].

2. Preliminaries

In this section, we introduce the notation commonly used in the paper, and
mention some basic facts.

The closed unit ball (sphere) of a Banach space X is denoted by B(X)
(resp. S(X)). If X is a Banach lattice, and C ⊂ X, write C+ = C ∩ X+,
where X+ stands for the positive cone of X. Further, we say that C ⊂ X is
solid if, for x ∈ X and z ∈ C, the inequality |x| ≤ |z| implies the inclusion
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x ∈ C. In particular, x ∈ X belongs to C if and only if |x| does. Note that
any solid set is automatically balanced ; that is, C = −C.

Restricting our attention to the positive cone X+, we say that C ⊂ X+ is
positive-solid if for any x ∈ X+, the existence of z ∈ C satisfying x ≤ z
implies the inclusion x ∈ C.

We will denote the set of order extreme points of C (defined in Section 1)
by OEP(C); the set of “classical” extreme points is denoted by EP(C).

Remark 2.1. It is easy to see that the set of all extreme points of a compact
metrizable set is Gδ. The same can be said for the set of order extreme points
of A, whenever A is a closed solid bounded subset of a separable reflexive
Banach lattice. Indeed, then the weak topology is induced by a metric d.
For each n let Fn be the set of all x ∈ A for which there exist x1, x2,∈ A
with x ≤ (x1 + x2)/2, and d(x1, x2) ≥ 1/n. By compactness, Fn is closed.
Now observe that ∪nFn is the complement of the set of all order extreme
points.

Note that every order extreme point is an extreme point in the usual sense,
but the converse is not true: for instance, 1(0,1) is an extreme point of
B(L∞(0, 2))+, but not its order extreme point. However, a connection be-
tween “classical” and order extreme points exists:

Theorem 2.2. Suppose A is a solid subset of a Banach lattice X. Then a
is an extreme point of A if and only if |a| is its order extreme point.

The proof of Theorem 2.2 uses the notion of a quasi-unit. Recall [19, Defi-
nition 1.2.6] that for e, v ∈ X+, v is a quasi-unit of e if v ∧ (e− v) = 0. This
terminology is not universally accepted: the same objects can be referred to
as components [1], or fragments [20].

Proof. Suppose |a| is order extreme. Let 0 < t < 1 be such that a =
tx+ (1− t)y. Then since A is solid and |a| ≤ t|x|+ (1− t)|y|, one has |x| =
|y| = |a|. Thus the latter inequality is in fact equality. Thus |a|+a = 2a+ =
2tx+ + 2(1− t)y+, so a+ = tx+ + (1− t)y+. Similarly, a− = tx−+ (1− t)y−.
It follows that x+ ⊥ y− and x− ⊥ y+. Since x+ + x− = |x| = |y| = y+ + y−,
we have that x+ = x+ ∧ (y+ + y−) = x+ ∧ y+ + x+ ∧ y− (since y+, y− are
disjoint). Now since x+ ⊥ y−, the latter is just x+ ∧ y+, hence x+ ≤ y+.
By similar argument one can show the opposite inequality to conclude that
x+ = y+, and likewise x− = y−, so x = y = a.

Now suppose a is extreme. It is sufficient to show that |a| is order extreme
for A+. Indeed, if |a| ≤ tx + (1 − t)y (with 0 ≤ t ≤ 1 and x, y ∈ A), then
|a| ≤ t|x| + (1 − t)|y|. As |a| is an order extreme point of A+, we conclude
that |x| = |y| = |a|, so |a| = tx + (1 − t)y = t|x| + (1 − t)|y|. The latter
implies that x− = y− = 0, hence x = |x| = |a| = |y| = y.

Therefore, suppose |a| ≤ tx+ (1− t)y with 0 ≤ t ≤ 1, and x, y ∈ A+. First
show that |a| is a quasi-unit of x (and by similar argument of y). To this
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end, note that a+ − tx ∧ a+ ≤ (1− t)y ∧ a+. Since A is solid,

A 3 z+ :=
1

1− t
(a+ − tx ∧ a+)

and similarly, since a− − tx ∧ a− ≤ (1− t)y ∧ a−,

A 3 z− :=
1

1− t
(a− − tx ∧ a−)

These inequalities imply that z+ ⊥ z−, so they correspond to the positive
and negative parts of some z = z+ − z−. Also, z ∈ A since |z| ≤ |a|. Now
a+ = t(x ∧ a+

t ) + (1 − t)z+ and a− = t(x ∧ a−
t ) + (1 − t)z+. In addition,

|x ∧ a+
t − x ∧

a−
t | ≤ x, so since A is solid,

z′ := x ∧ a+

t
− x ∧ a−

t
∈ A.

Therefore a = a+ − a− = tz′ + (1− t)z. Since a is an extreme point, a = z,
hence

(1− t)z+ = (1− t)a+ = a+ − tx ∧ a+

so tx ∧ a+ = ta+ which implies that (t(x − a+)) ∧ ((1 − t)a+) = 0. As
0 < t < 1, we have that a+ (and likewise a−) is a quasi-unit of x (and
similarly of y). Thus |a| is a quasi-unit of x and of y.

Now let s = x− |a|. Then a+ s, a− s ∈ A, since |a± s| = x. We have

a =
a− s

2
+
a+ s

2
,

but since a is extreme, s must be 0. Hence x = |a|, and similarly y = |a|. �

The situation is different if A is a positive-solid set: the paragraph preced-
ing Theorem 2.2 shows that A can have extreme points which are not order
extreme. If, however, a positive-solid set satisfies certain compactness con-
ditions, then some connections between extreme and order extreme points
can be established; see Proposition 4.11, and the remark following it.

If C is a subset of a Banach lattice X, denote by S(C) the solid hull of C,
which is the smallest solid set containing C. It is easy to see that S(C) is
the set of all z ∈ X for which there exists x ∈ C satisfying |z| ≤ |x|. Clearly
S(C) = S(|C|), where |C| = {|x| : x ∈ C}. Further, we denote by CH(C)
the convex hull of C. For future reference, observe:

Proposition 2.3. If X is a Banach lattice, then S(CH(|C|)) = CH(S(C))
for any C ⊂ X.

Proof. Let x ∈ CH(S(C)). Then x =
∑
aiyi, where

∑
ai = 1, ai > 0, and

|yi| ≤ |ki| for some ki ∈ C. Then

|x| ≤
∑

ai|yi| ≤
∑

ai|ki| ∈ CH(|C|),
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so x ∈ S(CH(|C|)). If x ∈ S(CH(|C|)), then

|x| ≤
n∑
1

aiyi, yi ∈ |C|, 0 < ai,
∑

ai = 1.

We use induction on n to prove that x ∈ CH(S(C)). If n = 1, x ∈ S(C)

and we are done. Now, suppose we have shown that if |x| ≤
∑n−1

1 aiyi then

there are z1, ..., zn−1 ∈ S(C)+ such that |x| =
∑n−1

1 aizi. From there, we
have that

|x| = (

n∑
1

aiyi) ∧ |x| ≤ (

n−1∑
1

aiyi) ∧ |x|+ (anyn) ∧ |x|.

Now

0 ≤ |x| − (
n−1∑

1

aiyi) ∧ |x| ≤ an(yn ∧
|x|
an

).

Let zn := 1
an

(|x| − (
∑n−1

1 aiyi) ∧ |x|). By the above, zn ∈ S(C)+. Further-
more,

1

1− an
(|x| ∧

n−1∑
1

aiyi) ≤
n−1∑

1

ai
1− an

yi ∈ CH(|C|),

so by induction there exist z1, .., zn−1 ∈ S(C)+ such that

|x| ∧ (

n−1∑
1

aiyi) =

n−1∑
1

ai
1− an

zi

Therefore |x| =
∑n

1 aizi. Now for each n, aizi ≤ |x|, so |x| =
∑(

(aizi)∧|x|
)
,

and

aizi = aizi ∧ x+ + aizi ∧ x− = ai(zi ∧ (
x+

ai
) + zi ∧ (

x−
ai

)).

Let wi = zi ∧ (x+ai )− zi ∧ (x−ai ). Note that |wi| = zi, so wi ∈ S(C). It follows

that x =
∑
aiwi ∈ CH(S(C)). �

For C ⊂ X (as before, X is a Banach lattice) we define the solid convex
hull of C to be the smallest convex, solid set containing C, and denote it by
SCH(C); the norm (equivalently, weak) closure of the latter set is denoted
by CSCH(C), and referred to as the closed solid convex hull of C.

Corollary 2.4. Let C ⊆ X. Then

(1) SCH(C) = CH(S(C)) = SCH(|C|), and consequently, CSCH(C) =
CSCH(|C|).

(2) If C ⊆ X+, then SCH(C) = S(CH(C)).

Proof. (1) Suppose C ⊆ D, where D is convex and solid. Then CH(S(C)) ⊆
D. Consequently, CH(S(C)) ⊂ SCH(C). On the other hand, by Proposition
2.3, CH(S(C)) is also solid, so SCH(C) ⊆ CH(S(C)). Thus, SCH(C) =
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CH(S(C)) = CH(S(|C|)) = SCH(|C|).
(2) This follows from (1) and the equality in Proposition 2.3. �

Remark 2.5. The two examples below show that S(C) need not be closed,
even if C itself is. Example (1) exhibits an unbounded closed set C with
S(C) not closed; in Example (2), C is closed and bounded, but the ambient
Banach lattice needs to be infinite dimensional.

(1) Let X be a Banach lattice of dimension at least two, and consider disjoint
norm one e1, e2 ∈ B(X)+. Let C = {xn : n ∈ N}, where xn = n

n+1e1 + ne2.

Now, C is norm-closed: if m > n, then ‖xm − xn‖ ≥ ‖e2‖ = 1. However,
S(C) is not closed: it contains re1 for any r ∈ (0, 1), but not e1.

(2) If X is infinite dimensional, then there exists a closed bounded C ⊂
X+, for which S(C) is not closed. Indeed, find disjoint norm one elements
e1, e2, . . . ∈ X+. For n ∈ N let yn =

∑n
k=1 2−kek and xn = yn + en. Then

clearly ‖xn‖ ≤ 2 for any n; further, ‖xn − xm‖ ≥ 1 for any n 6= m, hence
C = {x1, x2, . . .} is closed. However, yn ∈ S(C) for any n, and the sequence
(yn) converges to

∑∞
k=1 2−kek /∈ S(C).

However, under certain conditions we can show that the solid hull of a closed
set is closed.

Proposition 2.6. A Banach lattice X is reflexive if and only if, for any
norm closed, bounded convex C ⊂ X+, S(C) is norm closed.

Proof. Support first X is reflexive, and C is a norm closed bounded convex
subset of X+. Suppose (xn) is a sequence in S(C), which converges to some
x in norm; show that x belongs to S(C) as well. Clearly |xn| → |x| in norm.
For each n find yn ∈ C so that |xn| ≤ yn. By passing to a subsequence if
necessary, we assume that the sequence (yn) converges to some y ∈ X in the
weak topology. For convex sets, norm and weak closures coincide, hence y
belongs to C. For each n, ±xn ≤ yn; passing to the weak limit gives ±x ≤ y,
hence |x| ≤ y.

Now supposeX is not reflexive. By [1, Theorem 4.71], there exists a sequence
of disjoint elements ei ∈ S(X)+, equivalent to the natural basis of either c0

or `1.

First consider the c0 case. Let C be the closed convex hull of

x1 =
e1

2
, xn =

(
1− 2−n

)
e1 +

n∑
j=2

ej (n ≥ 2).

We shall show that any element of C can be written as ce1 +
∑∞

i=2 ciei, with

c < 1 . This will imply that S(C) is not closed: clearly e1 ∈ S(C)\S(C).

The elements of CH(x1, x2, . . .) are of the form
∑∞

i=1 tixi = ce1 +
∑∞

i=2 ciei;
here, ti ≥ 0, ti 6= 0 for finitely many values of i only, and

∑
i ti = 1. Note

that ci =
∑∞

j=i ti for i ≥ 2 (so ci = 0 eventually); for convenience, let
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c1 =
∑∞

j=1 ti = 1. Then ti = ci − ci+1; Abel’s summation technique gives

c =
∞∑
i=1

(
1− 2−i

)
ti = 1−

∞∑
i=1

2−i
(
ci − ci+1

)
=

1

2
+
∞∑
j=2

2−jcj .

Now consider x ∈ C. Then x is the norm limit of the sequence

x(m) = c(m)e1 +
∞∑
i=2

c
(m)
i ei ∈ CH(x1, x2, . . .);

for each m, the sequence (c
(m)
i ) has only finitely many non-zero terms, c(m) =

1
2 +

∑∞
j=2 2−jc

(m)
j , and for all m,n ∈ N, |c(m)

i − c(n)
i | ≤ ‖x(m) − x(n)‖. Thus,

x = ce1+
∑∞

i=2 ciei, with c = 1
2 +
∑∞

j=2 2−jcj . As 0 ≤ cj ≤ 1, and limj cj = 0,
we conclude that c < 1, as claimed.

Now suppose (ei) are equivalent to the natural basis of `1. Let C be the
closed convex hull of the vectors

xn =
(
1− 2−n

)
e1 + en (n ≥ 2),

and show that e1 ∈ S(C)\S(C). Note that

C =
{( ∞∑

i=2

(
1− 2−n

)
ti

)
e1 +

∞∑
i=2

tiei : t2, t3, . . . ≥ 0,
∞∑
i=2

ti = 1
}
.

Clearly e1 belongs to S(C), but not to S(C). �

3. Separation by positive functionals

Throughout the section, X is a Banach lattice, equipped with a locally
convex Hausdorff topology τ . This topology is called sufficiently rich if the
following conditions are satisfied:

(i) The space Xτ of τ -continuous functionals on X is a Banach lattice
(with lattice operations defined by Riesz-Kantorovich formulas).

(ii) X+ is τ -closed.

Note that (i) and (ii) together imply that positive τ -continuous functionals
separate points. That is, for every x ∈ X\{0} there exists f ∈ Xτ

+ so that
f(x) 6= 0. Indeed, without loss of generality, x+ 6= 0. Then −x+ /∈ X+,
hence there exists f ∈ Xτ

+ so that f(x+) > 0. By [19, Proposition 1.4.13],
there exists g ∈ Xτ

+ so that g(x+) > f(x+)/2 and g(x−) < f(x+)/2. Then
g(x) > 0.

Clearly, the norm and weak topologies are sufficiently rich; in this case,
Xτ = X∗. The weak∗ topology on X, induced by the predual Banach
lattice X∗, is sufficiently rich as well; then Xτ = X∗.

Proposition 3.1 (Separation). Suppose τ is a sufficiently rich topology on
a Banach lattice X, and A ⊂ X+ is a τ -closed positive-solid bounded subset
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of X+. Suppose, furthermore, x ∈ X+ does not belong to A. Then there
exists f ∈ Xτ

+ so that f(x) > supa∈A f(a).

Lemma 3.2. Suppose A and X are as above, and f ∈ Xτ . Then supa∈A f(a)
= supa∈A f+(a).

Proof. Clearly supa∈A f(a) ≤ supa∈A f+(a). To prove the reverse inequality,
write f = f+ − f−, with f+ ∧ f− = 0. Fix a ∈ A; then

0 =
[
f+ ∧ f−

]
(a) = inf

0≤x≤a

(
f+(a− x) + f−(x)

)
.

For any ε > 0 we can find x ∈ A so that f+(a − x), f−(x) < ε. Then
f+(x) = f+(a)−f+(a−x) > f+(a)−ε, and therefore, f(x) = f+(x)−f−(x) >
f+(a)− 2ε. Now recall that ε > 0 and a ∈ A are arbitrary. �

Proof of Proposition 3.1. Use Hahn-Banach Theorem to find f strictly sep-
arating x from A. By Lemma 3.2, f+ achieves the separation as well. �

Remark 3.3. In this paper, we do not consider separation results on gen-
eral ordered spaces. Our reasoning will fail without lattice structure. For
instance, Lemma 3.2 is false when X is not a lattice, but merely an or-
dered space. Indeed, consider X = M2 (the space of real 2 × 2 matrices),

f =

(
1 0
0 −1

)
, and A = {ta0 : 0 ≤ t ≤ 1}, where a0 =

(
1 1
1 1

)
; one can

check that A = {x ∈M2 : 0 ≤ x ≤ a0}. Then f |A = 0, while sup
x∈A

f+(x) = 1.

The reader interested in the separation results in the non-lattice ordered
setting is referred to an interesting result of [15], recently re-proved in [2].

4. Solid convex hulls: theorems of Krein-Milman and Milman

Throughout this section, the topology τ is assumed to be sufficiently rich
(defined in the beginning of Section 3).

Theorem 4.1 (“Solid” Krein-Milman). Any τ -compact positive-solid subset
A of X+ coincides with the τ -closed positive-solid convex hull of its order
extreme points.

Proof. Let A be a τ -compact positive-solid subset of X+. Denote the τ -
closed positive convex hull of OEP(A) by B; then clearly B ⊂ A. The proof
of the reverse inclusion is similar to that of the “usual” Krein-Milman.

Suppose C is a τ -compact subset of X. We say that a non-void closed F ⊂ C
is an order extreme subset of C if, whenever x ∈ F and a1, a2 ∈ C satisfy
x ≤ (a1 +a2)/2, then necessarily a1, a2 ∈ F . The set F(C) of order extreme
subsets of C can be ordered by reverse inclusion (this makes C the minimal
order extreme subset of itself). By compactness, each chain has an upper
bound; therefore, by Zorn’s Lemma, F(C) has a maximal element. We claim
that these maximal elements are singletons, and they are the order extreme
points of C.
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We need to show that, if F ∈ F(C) is not a singleton, then there exists
G ( F which is also an order extreme set. To this end, find distinct a1, a2 ∈
F , and f ∈ Xτ

+ which separates them – say f(a1) > f(a2). Let α =
maxx∈F f(x), then G = F ∩ f−1(α) is a proper, order extreme subset of F .

Suppose, for the sake of contradiction, that there exists x ∈ A\B. Use
Proposition 3.1 to find f ∈ Xτ

+ so that f(x) > maxy∈B f(y). Let α =
maxx∈A f(x), then A∩f−1(α) is an order extreme subset of A, disjoint from
B. As noted above, this subset contains at least one extreme point. This
yields a contradiction, as we started out assuming all order extreme points
lie in B. �

Corollary 4.2. Any τ -compact solid subset of X coincides with the τ -closed
solid convex hull of its order extreme points.

Of course, there exist Banach lattices whose unit ball has no order extreme
points at all – L1(0, 1), for instance. However, an order analogue of [16,
Lemma 1] holds.

Proposition 4.3. For a Banach lattice X, the following two statements are
equivalent:

(1) Every bounded closed solid convex subset of X has an order extreme
point.

(2) Every bounded closed solid convex subset of X is the closed solid
convex hull of its order extreme points.

Proof. (2) ⇒ (1) is evident; we shall prove (1) ⇒ (2). Suppose A ⊂ X
is closed, bounded, convex, and solid. Let B = CSCH(OEP(A)) (which
is not empty, by (1)). Suppose, for the sake of contradiction, that B is a
proper subset of A. Let a ∈ A\B. Since B and A are solid, |a| ∈ A\B as
well, so without loss of generality we assume that a ≥ 0. Then there exists
f ∈ S(X∗)+ which strictly separates a from B; consequently,

sup
x∈A

f(x) ≥ f(a) > sup
x∈B

f(x).

Fix ε > 0 so that

2
√

2εα < sup
x∈A

f(x)− sup
x∈B

f(x), where α = sup
x∈A
‖x‖.

By Bishop-Phelps-Bollobás Theorem (see e.g. [4] or [9]), there exists f ′ ∈
S(X∗), attaining its maximum on A, so that ‖f − f ′‖ ≤

√
2ε.

Let g = |f ′|, then ‖f−g‖ ≤ ‖f−f ′‖ ≤
√

2ε. Further, g attains its maximum
on A+, and maxg∈A g(x) > supx∈B g(x). Indeed, the first statement follows
immediately from the definition of g. To establish the second one, note that
the triangle inequality gives us

sup
x∈B

g(x) ≤
√

2εα+ sup
x∈B

f(x), sup
x∈A

g(x) ≥ sup
x∈A

f(x)−
√

2εα.

Our assumption on ε gives us maxg∈A g(x) > supx∈B g(x).
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Let D = {a ∈ A : g(a) = supx∈A g(x)}. Due to (1), D has an order extreme
point which is also an order extreme point of A; this point lies inside of B,
leading to the desired contradiction. �

Milman’s theorem [21, 3.25] states that, if both K and CH(K)
τ

are compact,

then EP
(
CH(K)

τ) ⊂ K. An order analogue of Milman’s theorem exists:

Theorem 4.4. Suppose X is a Banach lattice.

(1) If K ⊂ X+ and CH(K)
τ

are τ -compact, then OEP
(
SCH(K)

τ) ⊆ K.
(2) If K ⊂ X+ is weakly compact, then OEP(CSCH(K)) ⊆ K.
(3) If K ⊂ X is norm compact, then OEP(CSCH(K)) ⊆ |K|.

The following lemma describes the solid hull of a τ -compact set.

Lemma 4.5. Suppose a Banach lattice X is equipped with a sufficiently rich
topology τ . If C ⊂ X+ is τ -compact, then S(C) is τ -closed.

Proof. Suppose a net (yi) ⊂ S(C) τ -converges to y ∈ X. For each i find
xi ∈ C so that |yi| ≤ xi – or equivalently, yi ≤ xi and −yi ≤ xi. Passing to
a subnet if necessary, we assume that xi → x ∈ C in the topology τ . Then
±y ≤ x, which is equivalent to |y| ≤ x. �

Proof of Theorem 4.4. (1) We first consider a τ -compact K ⊆ X+. Mil-

man’s traditional theorem holds that EP
(
CH(K)

τ) ⊆ K. Every order ex-

treme point of a set is extreme, hence the order extreme points of CH(K)
τ

are in K. Therefore, by Lemma 4.5 and Corollary 2.4,

SCH(K)
τ

= S(CH(K))
τ ⊆ S

(
CH(K)

τ)
= {x : |x| ≤ y ∈ CH(K)

τ}.

Thus, the points of SCH(K)
τ\CH(K)

τ
cannot be order extreme due to being

dominated by CH(K)
τ
. Therefore OEP

(
SCH(K)

τ) ⊆ OEP
(
CH(K)

τ) ⊆ K.

(2) Combine (1) with Krein’s Theorem (see e.g. [13, Theorem 3.133]), which

states that CH(K)
w

= CH(K) is weakly compact.

(3) Finally, supposeK ⊆ X is norm compact. By Corollary 2.4, CSCH(K) =
CSCH(|K|). |K| is norm compact, hence by [21, Theorem 3.20], so is

CH(|K|). By the proof of part (1), OEP(CSCH(K)) ⊆ |K|. �

We turn our attention to interchanging “solidification” and norm closure.
We work with the norm topology, unless specified otherwise.

Lemma 4.6. Let C ⊆ X, where X is a Banach lattice, and suppose that
S(|C|) is closed. Then S(C) = S(|C|).

Proof. One direction is easy: S(C) = S(|C|) ⊆ S(|C|), hence S(C) ⊆
S(|C|) = S(|C|).
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Now consider x ∈ S(|C|). Then by definition, |x| ≤ y for some y ∈ |C|.
Take yn ∈ |C| such that yn → y . Then |x| ∧ yn ∈ S(|C|) = S(C) for all n.
Furthermore,

|x+ ∧ yn − x− ∧ yn| = |x| ∧ yn,
so, x+ ∧ yn − x− ∧ yn ∈ S(C). By norm continuity of ∧,

x+ ∧ yn − x− ∧ yn → x+ ∧ y − x− ∧ y = x,

hence x ∈ S(C). �

Remark 4.7. The assumption of S(|C|) being closed is necessary: Remark
2.5 shows that, for a closed C ⊂ X+, S(C) need not be closed.

Corollary 4.8. Suppose C ⊆ Xis relatively compact in the norm topology.
Then S(C) = S(C).

Proof. The set C is compact, hence, by the continuity of | · |, the same is

true for |C|. Consequently, |C| ⊆ |C| ⊆ |C| = |C|, hence |C| = |C|. By

Lemmas 4.5 and 4.6, S(C) = S(|C|) = S(|C|) = S(C). �

Remark 4.9. In the weak topology, the equality |C| = |C| may fail. Indeed,
equip the Cantor set ∆ = {0, 1}N with its uniform probability measure µ.
Define xi ∈ L2(µ) by setting, for t = (t1, t2, . . .) ∈ ∆, xi(t) = ti − 1/4 (that
is, xi equals to either 3/4 or −1/4, depending on whether ti is 1 or 0). Then
C = {xi : i ∈ N} belongs to the unit ball of L2(µ), hence it is relatively
compact. It is clear that C contains 1/4 (here and below, 1 denotes the
constant 1 function). On the other hand, C does not contain 1/2, which

can be witnessed by applying the integration functional. Conversely, |C|
contains 1/2, but not 1/4.

Remark 4.10. Relative weak compactness of solid hulls have been studied
before. If X is a Banach lattice, then, by [1, Theorem 4.39], it is order
continuous iff the solid hull of any weakly compact subset of X+ is rela-
tively weakly compact. Further, by [8], the following three statements are
equivalent:

(1) The solid hull of any relatively weakly compact set is relatively
weakly compact.

(2) If C ⊂ X is relatively weakly compact, then so is |C|.
(3) X is a direct sum of a KB-space and a purely atomic order continuous

Banach lattice (a Banach lattice is called purely atomic if its atoms
generate it, as a band).

Finally, we return to the connections between extreme points and order ex-
treme points. As noted in the paragraph preceding Theorem 2.2, a non-zero
extreme point of a positive-solid set need not be order extreme. However,
we have:
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Proposition 4.11. Suppose τ is a sufficiently rich topology, and A is a
τ -compact positive-solid convex subset of X+. Then for any extreme point
a ∈ A there exists an order extreme point b ∈ A so that a ≤ b.

Remark 4.12. The compactness assumption is essential. Consider, for
instance, the closed set A ⊂ C[−1, 1], consisting of all functions f so that
0 ≤ f ≤ 1, and f(x) ≤ x for x ≥ 0. Then g(x) = x ∨ 0 is an extreme point
of A; however, A has no order extreme points.

Proof. If a is not an order extreme point, then we can find distinct x1, x2 ∈ A
so that 2a ≤ x1+x2. Then 2a ≤ (x1+x2)∧(2a) ≤ x1∧(2a)+x2∧(2a) ≤ x1+
x2. Write 2a = x1∧(2a)+(2a−x1∧(2a)). Both summands are positive, and
both belong to A (for the second summand, note that 2a− x1 ∧ (2a) ≤ x2).
Therefore, x1 ∧ (2a) = a = 2a− x1 ∧ (2a), hence in particular x1 ∧ (2a) = a.
Similarly, x2 ∧ (2a) = a. Therefore, we can write x1 as a disjoint sum
x1 = x′1 + a (a, x′1 are quasi-units of x1). In the same way, x2 = x′2 + a
(disjoint sum).

Now consider the τ -closed set B = {x ∈ A : x ≥ a}. As in the proof of
Theorem 4.1, we show that the family of τ -closed extreme subsets of B has
a maximal element; moreover, such an element is a singleton {b}. It remains
to prove that b is an order extreme point of A. Indeed, suppose x1, x2 ∈ A
satisfy 2b ≤ x1 + x2. A fortiori, 2a ≤ x1 + x2, hence, by the preceding
paragraph, x1, x2 ∈ B. Thus, x1 = b = x2. �

5. Examples: AM-spaces and their relatives

The following example shows that, in some cases, B(X) is much larger than
the closed convex hull of its extreme points, yet is equal to the closed solid
convex hull of its order extreme points.

Proposition 5.1. For a Banach lattice X, B(X) is the (closed) solid convex
hull of n disjoint non-zero elements if and only if X is lattice isometric to
C(K1)⊕1 . . .⊕1C(Kn) for suitable non-trivial Hausdorff compact topological
spaces K1, ...,Kn.

Proof. Clearly, the only order extreme points of B(C(K1)⊕1 . . .⊕1 C(Kn))
are 1Ki , with 1 ≤ i ≤ n.

Conversely, suppose B(X) = CSCH(x1, . . . , xn), where x1, . . . , xn ∈ B(X)+

are disjoint. It is easy to see that, in this case, B(X) = SCH(x1, . . . , xn).
Moreover, xi ∈ S(X)+ for each i. Indeed, otherwise there exists i ∈
{1, . . . , n} and λ > 1 so that λxi ∈ SCH(x1, . . . , xn), or in other words,
λxi ≤

∑n
j=1 tjxj , with tj ≥ 0 and

∑
j tj ≤ 1. Consequently, due to the

disjointness of xj ’s,

λxi = (λxi) ∧ (λxi) ≤
( n∑
j=1

tjxj
)
∧ (λxi) ≤

n∑
j=1

(tjxj) ∧ (λxi) ≤ tixi,



ORDER EXTREME POINTS 13

which yields the desired contradiction.

Let Ei be the ideal of X generated by xi, meaning the set of all x ∈ X for
which there exists c > 0 so that |x| ≤ c|xi|. Note that, for such x, ‖x‖ is
the infimum of all c’s with the above property. Indeed, if |x| ≤ |xi|, then
clearly x ∈ B(X). Conversely, suppose x ∈ B(X) ∩ Ei. In other words,
|x| ≤ cxi for some c, and also |x| ≤

∑
j tjxj , with tj ≥ 0, and

∑
j tj = 1.

Then |x| ≤ (cxi) ∧ (
∑

j tjxj) = (c ∧ ti)xi. Consequently, Ei (with the norm

inherited from X) is an AM -space, whose strong unit is xi. By [19, Theorem
2.1.3], Ei can be identified with C(Ki), for some Hausdorff compact Ki.

Further, Proposition 2.3 shows that X is the direct sum of the ideals Ei:
any y ∈ X has a unique disjoint decomposition y =

∑n
i=1 yi, with yi ∈ Ei.

We have to show that ‖y‖ =
∑

i ‖yi‖. Indeed, suppose ‖y‖ ≤ 1. Then
|y| =

∑
i |yi| ≤

∑
j tjxj , with tj ≥ 0, and

∑
j tj = 1. Note that ‖yi‖ ≤ 1 for

every i, or equivalently, |yi| ≤ xi. Therefore,

|yi| = |y| ∧ xi =
(∑

j

tjxj
)
∧ xi = ti,

which leads to ‖yi‖ ≤ ti; consequently, ‖y‖ ≤
∑

i ti ≤ 1. �

Example 5.2. For X = (C(K1)⊕1C(K2))⊕∞C(K3), order extreme points
of B(X) are 1K1 ⊕∞ 1K3 and 1K2 ⊕∞ 1K3 ; B(X) is the solid convex hull of
these points. Thus, the word “disjoint” in the statement of Proposition 5.1
cannot be omitted.

Note that B(C(K)) is the closed solid convex hull of its only order extreme
point – namely, 1K . This is the only type of AM-spaces with this property.

Proposition 5.3. Suppose X is an AM-space, and B(X) is the closed solid
convex hull of finitely many of its elements. Then X = C(K) for some
Hausdorff compact K.

Proof. Suppose B(X) is the closed solid convex hull of x1, . . . , xn ∈ B(X)+.
Then x0 := x1 ∨ . . . ∨ xn ∈ B(X)+ (due to X being an AM-space), hence
x ∈ B(X) iff |x| ≤ x0. Thus, x0 is the strong unit of X. �

Proposition 5.4. If X is an AM-space, and B(X) has an order extreme
point, then X is lattice isometric to C(K), for some Hausdorff compact K.

Proof. Suppose a is order extreme point of B(X). We claim that a is a
strong unit, which means that a ≥ x for any x ∈ B(X)+. Suppose, for the
sake of contradiction, that the inequality a ≥ x fails for some x ∈ B(X)+.
Then b = a ∨ x ∈ B(X)+ (due to the definition of an AM-space), and
a ≤ (a+ b)/2, contradicting the definition of an order extreme point. �

We next consider norm-attaining functionals. It is known that, for a Banach
space X, any element of X∗ attains its norm iff X is reflexive. If we restrict
ourself to positive functionals on a Banach lattice, the situation is different:
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clearly every positive functional on C(K) attains it norm at 1. Below we
show that, among separable AM-spaces, only C(K) has this property.

Proposition 5.5. Suppose X is a separable AM-space, so that every positive
linear functional attains its norm. Then X is lattice isometric to C(K).

Proof. Let (xi)
∞
i=1 be a dense sequence in S(X)+. For each i find x∗i ∈ B(X∗+)

so that x∗i (xi) = 1. Let x∗ =
∑∞

i=1 2−ix∗i . We shall show that ‖x∗‖ = 1.
Indeed, ‖x∗‖ ≤

∑
i 2−i = 1 by the triangle inequality. For the opposite

inequality, fix N ∈ N, and let x = x1 ∨ . . . ∨ xN . Then x ∈ S(X)+, and

‖x∗‖ ≥ x∗(x) ≥
N∑
i=1

2−ix∗i (x) ≥
N∑
i=1

2−ix∗i (xi) =
N∑
i=1

2−i = 1− 2−N .

As N can be arbitrarily large, we obtain the desired estimate on ‖x∗‖.
Now suppose x∗ attains its norm on a ∈ S(X)+. We claim that a is the
strong unit for X. Suppose otherwise; then there exists y ∈ B(X)+ so that
a ≥ y fails. Let b = a ∨ y, then z = b − y belongs to X+\{0}. Then
1 ≥ x∗(b) ≥ x∗(a) = 1, hence x∗(z) = 0. However, x∗ cannot vanish at
z. Indeed, find i so that ‖z/‖z‖ − xi‖ < 1/2. Then x∗i (z) ≥ ‖z‖/2, hence
x(z) > 2−i−1‖z‖ > 0. This gives the desired contradiction. �

In connection to this, we also mention a result about norm-attaining func-
tionals on order continuous Banach lattices.

Proposition 5.6. An order continuous Banach lattice X is reflexive if and
only if every positive linear functional on it attains its norm.

Proof. If an order continuous Banach lattice X is reflexive, then clearly
every linear functional is norm-attaining. If X is not reflexive, then, by the
classical result of James, there exists x∗ ∈ X∗ which does not attain its
norm. We show that |x∗| does not either.

Let B+ = {x ∈ X : x∗+(|x|) = 0}, and define B− similarly. As all linear
functionals on X are order continuous [19, Section 2.4], B+ and B− are
bands [19, Section 1.4]. Due to the order continuity of X [19, Section 2.4],
B± are ranges of band projections P±. Let B be the range of P = P+P−;
let Bo

+ be the range of P o+ = P+P
⊥
− = P+−P (where we set Q⊥ = IX −Q),

and similarly for Bo
− and P o−. Note that P o+ + P o− = P⊥.

Suppose for the sake of contradiction that x ∈ S(X)+ satisfies |x∗|(x) =
‖x∗‖. Replacing x by P⊥x if necessary, we assume that Px = 0, so x =
P o+x+ P o−x. Then ‖P o+x− P o−x‖ = 1, and

x∗
(
P o−x− P o+x

)
= x∗+

(
P o−x

)
− x∗+

(
P o+x

)
− x∗−

(
P o−x

)
+ x∗−

(
P o+x

)
= x∗+

(
P o−x

)
+ x∗−

(
P o+x

)
= |x∗|(x) = ‖x∗‖,

which contradicts our assumption that x does not attain its norm. �
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6. On the number of order extreme points

It is shown in [17] that, if a Banach space X is reflexive and infinite-
dimensional Banach lattice, then B(X) has uncountably many extreme
points. Here, we establish a similar lattice result.

Theorem 6.1. If X is a reflexive infinite-dimensional Banach lattice, then
B(X) has uncountably many order extreme points.

Note that if X is a reflexive infinite-dimensional Banach lattice, then The-
orems 2.2 and 6.1 imply that B(X) has uncountably many extreme points,
re-proving the result of [17] in this case.

Proof. Suppose, for the sake of contradiction, that there were only countably
many such points {xn}. For each such xn, we define Fn = {f ∈ B(X∗)+ :
f(xn) = ‖f‖}. Clearly Fn is weak∗ (= weakly) compact.

By the reflexivity of X, any f ∈ B(X∗) attains its norm at some x ∈
EP(B(X)). Since f(x) ≤ |f |(|x|) we assume that any positive functional
attains its norm at a positive extreme point in B(X). By Theorem 2.2,
these are precisely the order extreme points. Therefore

⋃
Fn = B(X∗)+.

By the Baire Category Theorem, one of these sets Fn must have non-empty
interior in B(X∗)+.

Assume it is F1. Pick f0 ∈ F1, and y1, ..., yk ∈ X, such that if f ∈ B(X∗)+

and for each yi, |f(yi)−f0(yi)| < 1, then f ∈ F1. Without loss of generality,
we assume that ‖f0‖ < 1, and also that each yi ≥ 0.

Further, we can and do assume that there exist mutually disjoint u1, u2, . . . ∈
S(X)+ which are disjoint from y = ∨iyi. Indeed, find mutually disjoint
z1, z2, . . . ∈ S(X)+. Denote the corresponding band projections by P1, P2, . . .
(such projections exist, due to the σ-Dedekind completeness of X). Then
the vectors Pny are mutually disjoint, and dominated by y. As X is reflex-
ive, it must be order continuous, and therefore, limn ‖Pny‖ = 0. Find n1 <
n2 < . . . so that

∑
j ‖Pnjy‖ < 1/2. Let wi =

∑
j Pnjyi and y′i = 2(yi − wi).

Then if |(f0 − g)(y′i)| < 1, with g ≥ 0, ‖g‖ ≤ 1, it follows that

|(f0 − g)(yi)| ≤
1

2
(|(f0 − g)(y′i)|+ |(f0 − g)(wi)|)

≤ 1

2
(1 + ‖f0 − g‖‖wi‖) <

1

2
(1 + 2 · 1

2
) = 1

We can therefore replace yi with y′i to ensure sufficient conditions for being
in F1. Then the vectors uj = znj have the desired properties. Let P be the
band projection complementary to

∑
j Pnj (in other words, complementary

to the the band projection of
∑

j 2−juj); then Pyi = yi for any i.

By [19, Lemma 1.4.3 and its proof], there exist linear functionals gj ∈
S(X∗)+ so that gj(uj) = 1, and gj = P ∗nj

gj . Consequently, the functionals

gj are mutually disjoint, and gj |ranP = 0. For j ∈ N find αj ∈ [1−‖P ∗f0‖, 1]
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so that ‖fj‖ = 1, where fj = P ∗f0 + αjgj . Then, for 1 ≤ i ≤ k, fj(yi) =
(P ∗f0)(yi) +αjgj(yi) = f0(yi), which implies that, for every j, fj belongs to
F1, hence attains its norm at x1.

On the other hand, note that limj gj(x1) = 0. Indeed, otherwise, there exist
γ > 0 and a sequence (jk) so that gjk(x1) ≥ γ for every k. For any finite
sequence of positive numbers (βk), we have∑

k

|βk| ≥
∥∥∑

k

βkgjk
∥∥ ≥∑

k

βkgjk(x1) ≥ γ
∑
k

|βk|.

As the functionals gjk are mutually disjoint, the inequalities∑
k

|βk| ≥
∥∥∑

k

βkgjk
∥∥ ≥ γ∑

k

|βk|

hold for every finite sequence (βk). We conclude that span[gjk : k ∈ N] is
isomorphic to `1, which contradicts the reflexivity of X. Thus, limj gj(x1) =
0, hence limj fj(x1) = f0(Px1) ≤ ‖f0‖ < 1. �

Corollary 6.2. Suppose C is a closed, bounded, solid, convex subset of
a reflexive Banach lattice, having non-empty interior. Then C contains
uncountably many order extreme points.

Proof. We assume without loss of generality that supx∈C ‖x‖ = 1. Note
that 0 is an interior point of C. Indeed, suppose x is an interior point. Pick
ε > 0 such that x + εB(X) ⊂ C. For any k such that ‖k‖ < ε, we have
k
2 = −x

2 + x+k
2 ∈ C, since C is solid and convex. Hence ε

2B(X) ⊆ C. Since C
is bounded, we can then define an equivalent norm, with ‖y‖C = inf{λ > 0 :
y ∈ λC}. Since C is solid, ‖y‖C = ‖ |y| ‖C , and the norm is consistent with
the order. Finally, ‖ · ‖C is equivalent to ‖ · ‖, since for all y ∈ X, we have
that ε

2‖y‖C ≤ ‖y‖ ≤ ‖y‖C . The conclusion follows by Theorem 6.1. �

7. The solid Krein-Milman Property and the RNP

We say that a Banach lattice (or, more generally, an ordered Banach space)
X has the Solid Krein-Milman Property (SKMP) if every solid closed boun-
ded subset of X is the closed solid convex hull of its order extreme points.
This is analogous to the canonical Krein-Milman Property (KMP) in Banach
spaces, which is defined in the similar manner, but without any references
to order. It follows from Theorem 2.2 that the KMP implies the SKMP.

These geometric properties turn out to be related to the Radon-Nikodým
Property (RNP). It is known that the RNP implies the KMP, and, for
Banach lattices, the converse is also true (see [7] for a simple proof). For
more information about the RNP in Banach lattices, see [19, Section 5.4]; a
good source of information about the RNP in general is [6] or [10].

One of the equivalent definitions of the RNP of a Banach space X involves
integral representations of operators T : L1 → X. If X is a Banach lattice,
then, by [22, Theorem IV.1.5], any such operator is regular (can be expressed
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as a difference of two positive ones); so positivity comes naturally into the
picture.

Theorem 7.1. For a Banach lattice X, the SKMP, KMP, and RNP are
equivalent.

Proof. The implications RNP ⇔ KMP ⇒ SKMP are noted above. Now
suppose X fails the RNP (equivalently, the KMP). We shall establish the
failure of the SKMP in two different ways, depending on whether X is a
KB-space, or not.

(1) If X is not a KB-space, then [19, Theorem 2.4.12] there exist disjoint
e1, e2, . . . ∈ S(X)+, equivalent to the canonical basis of c0. Then the set

C = S
({∑

i

αiei : max
i
|αi| = 1, lim

i
αi = 0

})
is solid, bounded, and closed. To give a more intuitive description of C,
for x ∈ X we let xi = |x| ∧ ei. It is easy to see that x ∈ C if and only if
limi ‖xi‖ = 0, and |x| =

∑
i xi. Finally, show that x ∈ C+ cannot be an order

extreme point. Find i so that ‖xi‖ < 1/2, and consider x′ =
∑

j 6=i xj + ei.

Then clearly x′ ∈ C, and x′ − x ∈ X+\{0}.
(2) If X is a KB-space failing the RNP, then, by [19, Proposition 5.4.9],
X contains a separable sublattice Y failing the RNP. Find a quasi-interior
point u ∈ Y – that is, u ∈ Y+ so that y = limn y ∧ (nu) for any y ∈ Y+ (for
properties of quasi-interior points and their existence in separable Banach
lattices, see [1, pp. 266-267]). By [19, Corollary 5.4.20], Y is not order
dentable – that is, Y+ contains a non-empty convex bounded subset A so

that for every n ∈ N, A = CH(A\Hn), where Hn = {y ∈ Y+ : ‖u ∧ y‖ ≥ 1
n}.

Any KB-space is order continuous, hence by [19, Theorem 2.4.2], its order
intervals are weakly compact. This permits us to use the techniques (and
notation) of [5] to construct a set C witnessing the failure of the SKMP.
For f ∈ Y ∗, let M(A, f) = supx∈A |f(x)|. For α > 0, define the slice
T (A, f, α) = {x ∈ A : f(x) > M(A, f)−α}. By [5] (proof of the main result
– p. 96), we can construct increasing measure spaces Σn on [0, 1] with |Σn|
finite, as well as Σn-measurable functions Yn : [0, 1] → A, fn : [0, 1] → Y ∗,
and αn : [0, 1]→ (0,∞) such that:

(1) For any n and t, Yn(t) ∈ T (A, fn(t), αn(t)).
(2) (Yn) is a martingale – that is, Yn(t) = EΣn(Yn+1(t)), for any t and

n (E stands for the conditional expectation).
(3) For any n and t, Hn ∩ T (A, fn(t), αn(t)) = ∅.
(4) For any n and t, T (A, fn+1(t), αn+1(t)) ⊆ T (A, fn(t), αn(t)).

Now let C ′ = CH({Yn(t), n ∈ N, t ∈ [0, 1]}), then the set C = S(C ′) (the
solid hull is in X) is closed, bounded, convex, and solid. We will show that
C has no order extreme points. By Theorem 2.2, it suffices to show that no
x ∈ C+\{0} can be an extreme point of C, or equivalently, of C+ = C ∩X+.
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From now on, fix x ∈ C+\{0}. Note that x ∧ u 6= 0. Indeed, suppose,
for the sake of contradiction, that x ∧ u = 0. Find y′ ∈ C ′ ⊂ Y+, so that
x ≤ y′. For any n, we have y′ ∧ (nu) = (y′ − x) ∧ (nu) ≤ y′ − x. Thus,
‖y′ − y′ ∧ (nu)‖ ≥ ‖x‖. However, u is a quasi-interior point of Y , hence
y′ = limn y

′ ∧ (nu). This is the desired contradiction.

Find n ∈ N so that ‖x ∧ u‖ > 1
n . Let I1, ..., Im be the atoms of Σn. For

i ≤ m, define C ′i = CH({Ym(t) : m ≥ n, t ∈ Ii}), and let Ci = S(C ′i)+.

The sequence (Yk) is a martingale, hence C ′ = CH(∪mi=1C
′
i). Thus, by

Proposition 2.3,

C = S(C ′) = S(CH(∪mi=1C
′
i)) = S(CH(∪mi=1Ci)).

By [5, Lemme 3], CH(∪mi=1Ci) is closed. This set is clearly positive-solid,
so by norm continuity of | · |, S(CH(∪m1 Ci)) is closed, hence equal to C. In
particular, C+ = CH(∪mi=1Ci). Therefore, if x is an extreme point of C+,
then it must belong to Ci, for some i. We show this cannot happen.

If y ∈ S(C ′i)+, then we can find y′ ∈ C ′i with y ≤ y′. By parts (1) and

(4), C ′i ⊆ T (A, fn(t), αn(t)) for t ∈ Ii. By (3), ‖z ∧ u‖ < 1
n for any z ∈

T (A, fn(t), αn(t)), hence, by the norm continuity of lattice operations, ‖y′ ∧
u‖ ≤ 1

n . This implies ‖y ∧ u‖ ≤ 1
n . By the triangle inequality,

‖x ∧ u‖ ≤ ‖y ∧ u‖+ ‖x− y‖ ≤ 1

n
+ ‖x− y‖.

hence ‖x − y‖ ≥ ‖x ∧ u‖ − 1
n . Recall that n is selected in such a way that

‖x ∧ u‖ > 1
n . As Ci = S(C ′i)+, it cannot contain x. Thus, C witnesses the

failure of the SKMP. �
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